Introduction

> Problem Definition

e Camera localization: Estimate the accurate camera pose in a
known environment.

e Active camera localization: Allow the agent to move to a new
position where the camera can be accurately localized.
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» Drawbacks of Existing Methods

e Camera localization in the coarse-scale discrete pose space.

Memory & computation inefficient, and not scalable to large

environments and COﬂtiﬂUOUS camera pOSG space.
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e Agnostic to localization-driven scene uncertainty.

Without considering the localization-driven scene uncertainty
information, which is an important guidance for camera movements.
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» Critical Questions

e How to locate: How to accurately localize the camera
e Where to go: Where it should move for accurate active localization
e When to stop: When it should decide to stop the camera movement

> Our Work

e A novel active camera localization algorithm solved by
reinforcement learning

e Camera localization in continuous space

e Explicitly models the scene uncertainty to guide the camera
movement towards localizable regions

e Explicitly models the camera uncertainty to determine the
adaptive stop condition

Towards Accurate Active Camera Localization
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Method Overview Full Pipeline

a) Passive |ocalization module Algorithm 1 The full pipeline of our algorithm
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> Passive Localizer — How to locate

We adopt the state-of-the-art approach, decision

if Uéi) is within A., cm, A\., degrees then

tree, to achieve pose estimation in continuous break "
Execute the action a'’
space. Pt 1
return C*)
> Scene Uncertainty - Where to go Rs&

We describe scene uncertainty from two perspectives, where the camera Experlments

is located and what underlying part of the scene is observed are more

: = Numerical results evaluated with 5cm, 5° accuracy
effective for accurate localization.

ACL-synthetic ACL-real
€3 @ (t)
‘E% foa. Methods Acc (%) +#steps Acc (%) #steps
£
; ANL [15] 3.25 100 3.20 100
c No-movement (DecisionTree) 9.35 0 6.80 0
£ No-movement (DSAC) 14.90 0 7.80 0
o Turn-around 25.00 12 35.20 12
5 Camera-descent (t+1) 61.55 22.90 61.40 26.85
. Camera-descent (t-+2) 55.30 22.60 59.20 25.78
v’{ Scene-descent 57.65 18.56 54.20 16.87
£
Ours (w/0 Re&M ') 67.65 17.40 70.60 19.71
Ours (w/0 Re& M) 66.40 16.27 67.40 18.63
£ Ours (w/o Re) 72.50 18.57 73.00 20.72
é Current re channel History fre channel Uncertainty\channel Rendered images 01_11'5 83.05 1 7 33 82.40 1 7 90

» Camera Uncertainty — When to stop

Qualitative results

Prediction error is estimated by ICP between the observed depth and the
rendered depth with the predicted pose _ I
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> Rewards e

e Slack reward: R; = —1, punish unnecessary steps

e Exploration reward: R, = 0.1/v, award for visiting the unseen cells i ]
where v is the visit count in the Currenﬂy Occupied cell d) Failure case e) Camera-driven uncertainty channel f) World-driven uncertainty channel



