

FisherMatch: Semi-Supervised Rotation Regression via Entropy-based Filtering

Yingda Yin, Yingcheng Cai, He Wang[†], Baoquan Chen[†] Peking University

†: corresponding author

Introduction

> Task: Given a small number of labeled data and a large collection of unlabeled data, our algorithm learns to regress 3D rotation in a semi-supervised manner.

- Very high cost for rotation annotation for 2D images
- Huge amounts of unannotated data available
- Our work
 - The first general semi-supervised rotation regression framework
 - Demonstrates superior efficacy that can learn from few labeled

Probabilistic Modeling of Rotation

Bingham distribution (for quaternions)

$$\mathcal{B}(\mathbf{q}; \mathbf{\Lambda}, \mathbf{V}) = \frac{1}{F(\mathbf{\Lambda})} \exp \left(\mathbf{q}^T \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T \mathbf{q} \right)$$

Matrix Fisher distribution (for rotation matrices)

$$\mathcal{MF}(\mathbf{R}; \mathbf{A}) = \frac{1}{F(\mathbf{A})} \exp\left(\operatorname{tr}\left(\mathbf{A}^T\mathbf{R}\right)\right)$$

- Probabilistic modeling of rotation is the correct way to model the uncertainty of rotation regression.
- For one matrix Fisher distribution, an equivalent Bingham distribution exists and satisfy $p_F = 2\pi^2 p_B$.
- We choose matrix Fisher due to the continuity of the rotation matrices.

Method Overview

- We adopt teacher-student framework with pseudo-label filtering, where pseudo label is a matrix Fisher distribution on SO(3).
- Key differences: 1) we use analytical cross entropy for supervising the errors between two matrix Fisher distributions.

2) we utilize the distribution entropy as rotation uncertainty to perform pseudo-label filtering.

Entropy-based pseudo-label filtering

Entropy is highly correlated with errors!

> Loss

 $L = L_l\left(oldsymbol{x}^l, oldsymbol{y}^l
ight) + \lambda_u L_u\left(oldsymbol{x}^u
ight)$ Overall loss

Supervised loss: Negative log likelihood

$$L_l\left(oldsymbol{x}^l, oldsymbol{y}^l
ight) = -\log\left(\mathcal{MF}\left(oldsymbol{y}^l; \mathbf{A}^l)
ight)
ight)$$

Unsupervised loss with entropy-based filtering

$$L_u\left(\boldsymbol{x}^u\right) = \mathbb{1}\left(H(p_t) \le \tau\right) L\left(p_t, p_s\right)$$

Unsupervised CE loss $L^{\text{CE}}\left(\delta(\boldsymbol{y}_{t}^{u}), p_{s}\right) = H\left(\delta(\boldsymbol{y}_{t}^{u}), p_{s}\right)$ Unsupervised NLL loss $L^{\mathrm{NLL}}\left(p_{t}, p_{s}\right) = -\log p_{s}(\boldsymbol{y}_{t}^{u})$

baselines

Experiment

- Superior performance over supervised and other semi-supervised
- Few annotations required

Results on ModelNet10-SO(3) under different ratios of labeled data

Category	Method	5%		10%	
Category	Wicthod	Mean↓	Med.↓	Mean↓	Med.↓
Sofa	SupL1 [29]	44.64	11.42	32.65	9.03
	SupFisher [35]	45.19	13.16	32.92	8.83
	SSL-L1-Consist.	36.86	8.65	25.94	6.81
	SSL-FisherMatch	32.02	7.78	21.29	5.25
	Full Sup.	18.62	5.77	18.62	5.77
Chair	SupL1 [29]	40.41	16.09	29.02	10.64
	SupFisher [35]	39.34	16.79	28.58	10.84
	SSL-L1-Consist.	31.20	11.29	23.59	8.10
	SSL-FisherMatch	26.69	9.42	20.06	7.44
	Full Sup.	17.38	6.78	17.38	6.78

Results on Pascal3D+ dataset with few labeled images

Method			20		30	
	Med.↓	Acc ₃₀ ∘↑	Med.↓	Acc ₃₀ ∘↑	Med.↓	Acc ₃₀ ∘↑
Res50-Gene	39.1	36.1	26.3	45.2	20.2	54.6
Res50-Spec	46.5	29.6	29.4	42.8	23.0	50.4
StarMap [59]	49.6	30.7	46.4	35.6	27.9	53.8
NeMo [45]	60.0	38.4	33.3	51.7	22.1	69.3
NVSM [46]	37.5	53.8	28.7	61.7	24.2	65.6
FisherMatch	28.3	56.8	23.8	63.6	16.1	75.7
Full Sup.	8.1	89.6	8.1	89.6	8.1	89.6

Analysis

Training process

- CE loss performs the better with broader compatibility, and the NLL loss encourages a higher confidence of the network.
- NLL loss is a sharpened version of CE loss: $L^{\text{CE}}\left(\operatorname{Dirac}(p_t), p_s\right) = L^{\text{NLL}}\left(p_t, p_s\right)$

